Übersicht_Lueftung
Bibliotheken importieren
# Name des aktuellen Notebooks für die exportierten Datein
file_name = "Analyse_CO2_Konzentration"
# Ordner auf dem Server (nach files/)
ftp_folder = 'Notebooks/Auswertung'
## Bibliotheken, Module und Text- bzw- Grafikformatierungen aus zentraler Datei laden
%run ../Template/libraries_and_styles.ipynb
## Warum auch immer muss rcParams.update() in eine eigene Zelle...
mpl.rcParams.update(params)
Daten Import
daten = pd.read_csv('../1_Daten/Arbeitsdaten/Daten_15s.csv')
daten["Zeit"] = pd.to_datetime(daten["Zeit"],dayfirst=True)
daten.set_index(['Zeit'], inplace=True)
CO2 Plots
von = pd.to_datetime("2017-05-01 00:00:00",infer_datetime_format=True)
bis = pd.to_datetime("2018-04-30 23:00:00",infer_datetime_format=True)
fig, ax = plt.subplots(nrows=2, ncols=1)
## Liniendiagramm
daten['L_Seminarraum_1_CO2'].plot(ax=ax[0],linewidth=0.5,color=colo('blau',1))
daten['L_Seminarraum_2_CO2'].plot(ax=ax[0],linewidth=0.5,color=colo('orange',1))
ax[0].set_title('CO2 Konzentration')
ax[0].set_xlabel('')
ax[0].set_xlim(von, bis)
ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%b'))
plt.setp(ax[0].get_xticklabels(), rotation=0, horizontalalignment='left')
ax[0].legend()
## Histogramm
daten['L_Seminarraum_1_CO2'].plot.hist(bins=600, density=False,linewidth=0.8, color=colo('blau',1), ax=ax[1], histtype='step')
daten['L_Seminarraum_2_CO2'].plot.hist(bins=600, density=False,linewidth=0.8, color=colo('orange',1), ax=ax[1], histtype='step')
ax[1].set_ylabel('')
ax[1].legend()
<matplotlib.legend.Legend at 0x2010751a408>
Mittelwerte stündlich
Sem1 = []
Sem2 = []
for i in range(0, 24):
Sem1.append(daten.L_Seminarraum_1_CO2.loc[(daten.index.hour==i)].resample("1H").mean().mean().sum())
Sem2.append(daten.L_Seminarraum_2_CO2.loc[(daten.index.hour==i)].resample("1H").mean().mean().sum())
labels = range(0, 24)
width = 0.35
x = np.arange(len(labels))
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, Sem1, width, edgecolor="k", color=colo('blau',1), label='Sem1 CO2')
rects2 = ax.bar(x + width/2, Sem2, width, edgecolor="k", color=colo('orange',1), label='Sem2 CO2')
ax.set(ylim=[400,700])
ax.set_ylabel('ppm')
ax.set_title('CO2 stündliche Mittelwerte')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
<matplotlib.legend.Legend at 0x2010b0c3e08>
Sem1 = []
Sem2 = []
for i in range(0, 24):
Sem1.append(daten.L_Seminarraum_1_CO2.loc[(daten.index.hour==i)].resample("1H").median().mean().sum())
Sem2.append(daten.L_Seminarraum_2_CO2.loc[(daten.index.hour==i)].resample("1H").median().mean().sum())
labels = range(0, 24)
width = 0.35
x = np.arange(len(labels))
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, Sem1, width, edgecolor="k", color=colo('blau',1), label='Sem1 CO2')
rects2 = ax.bar(x + width/2, Sem2, width, edgecolor="k", color=colo('orange',1), label='Sem2 CO2')
ax.set(ylim=[400,700])
ax.set_ylabel('ppm')
ax.set_title('CO2 stündliche Medianwerte')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
<matplotlib.legend.Legend at 0x2010aa16b88>
Mittelwerte täglich
daten_sub = daten.loc['2017-08-12':'2018-04-30']
Sem1 = []
Sem2 = []
for i in range(1,8):
Sem1.append(daten_sub.L_Seminarraum_1_CO2.loc[(daten_sub.index.day==i)].resample("1D").mean().mean().sum())
Sem2.append(daten_sub.L_Seminarraum_2_CO2.loc[(daten_sub.index.day==i)].resample("1D").mean().mean().sum())
labels = range(1,8)
width = 0.35
x = np.arange(len(labels))
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, Sem1, width, edgecolor="k", color=colo('blau',1), label='Sem1 CO2')
rects2 = ax.bar(x + width/2, Sem2, width, edgecolor="k", color=colo('orange',1), label='Sem2 CO2')
ax.set(ylim=[400,700])
ax.set_ylabel('ppm')
ax.set_title('CO2 tägliche Mittelwerte August bis April ')
ax.set_xticks(x)
ax.set_xticklabels(['Mo','Di','Mi','Do','Fr','Sa','So'])
ax.legend()
<matplotlib.legend.Legend at 0x2010ab8cfc8>
quadriert
daten_sub = daten.loc['2017-08-12':'2018-04-30']
Sem1 = []
Sem2 = []
pot = 4.
for i in range(1,8):
Sem1.append(pow(daten_sub.L_Seminarraum_1_CO2.loc[(daten_sub.index.day==i)],pot).resample("1D").mean().mean().sum()**(1./pot))
Sem2.append(pow(daten_sub.L_Seminarraum_2_CO2.loc[(daten_sub.index.day==i)],pot).resample("1D").mean().mean().sum()**(1./pot))
labels = range(1,8)
width = 0.35
x = np.arange(len(labels))
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, Sem1, width, edgecolor="k", color=colo('blau',1), label='Sem1 CO2')
rects2 = ax.bar(x + width/2, Sem2, width, edgecolor="k", color=colo('orange',1), label='Sem2 CO2')
ax.set(ylim=[400,700])
ax.set_ylabel('ppm')
ax.set_title('CO2 tägliche Mittelwerte August bis April '+str(pot))
ax.set_xticks(x)
ax.set_xticklabels(['Mo','Di','Mi','Do','Fr','Sa','So'])
ax.legend()
<matplotlib.legend.Legend at 0x2010ab8ec08>
daten_sub = daten.loc['2017-08-12':'2018-04-30']
Sem1 = []
Sem2 = []
for i in range(1,8):
Sem1.append(daten_sub.L_Seminarraum_1_CO2.loc[(daten_sub.index.day==i)].resample("1D").median().mean().sum())
Sem2.append(daten_sub.L_Seminarraum_2_CO2.loc[(daten_sub.index.day==i)].resample("1D").median().mean().sum())
labels = range(1,8)
width = 0.35
x = np.arange(len(labels))
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, Sem1, width, edgecolor="k", color=colo('blau',1), label='Sem1 CO2')
rects2 = ax.bar(x + width/2, Sem2, width, edgecolor="k", color=colo('orange',1), label='Sem2 CO2')
ax.set(ylim=[400,700])
ax.set_ylabel('ppm')
ax.set_title('CO2 tägliche Medianwerte August bis April '+str(pot))
ax.set_xticks(x)
ax.set_xticklabels(['Mo','Di','Mi','Do','Fr','Sa','So'])
ax.legend()
<matplotlib.legend.Legend at 0x2010acc4dc8>
Mittelwerte wöchentlich
# daten_sub = daten.loc['2017-08-12':'2018-04-30']
Sem1 = []
Sem2 = []
for i in range(1,53):
Sem1.append(daten.L_Seminarraum_1_CO2.loc[(daten.index.week==i)].resample("1W").mean().mean().sum())
Sem2.append(daten.L_Seminarraum_2_CO2.loc[(daten.index.week==i)].resample("1W").mean().mean().sum())
labels = range(1,53)
width = 0.35
x = np.arange(len(labels))
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, Sem1, width, edgecolor="k", color=colo('blau',1), label='Sem1 CO2')
rects2 = ax.bar(x + width/2, Sem2, width, edgecolor="k", color=colo('orange',1), label='Sem2 CO2')
ax.set(ylim=[400,700])
ax.set_ylabel('ppm')
ax.set_title('CO2 wöchentliche Mittelwerte August bis April')
# ax.set_xticklabels(['Mai','Jun','Jul','Aug','Sep','Okt','Nov','Dez','Jan','Feb','Mrz','Apr'])
# ax.set_xticks(x*2[::2])
# ax.set_xticklabels(x*2[::2])
# ax.set_xticks(x)
# ax.set_xticks(ax.get_xticks()[0:207:4])
# plt.xticks(list(range(0, 0,4)))
ax.set_xticklabels(labels)
ax.legend()
<matplotlib.legend.Legend at 0x2010ad98bc8>
Mittelwerte monatlich
# daten_sub = daten.loc['2017-08-12':'2018-04-30']
Sem1 = []
Sem2 = []
for i in range(1,13):
Sem1.append(daten.L_Seminarraum_1_CO2.loc[(daten.index.month==i)].resample("1M").mean().mean().sum())
Sem2.append(daten.L_Seminarraum_2_CO2.loc[(daten.index.month==i)].resample("1M").mean().mean().sum())
labels = range(1,13)
width = 0.35
x = np.arange(len(labels))
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, Sem1, width, edgecolor="k", color=colo('blau',1), label='Sem1 CO2')
rects2 = ax.bar(x + width/2, Sem2, width, edgecolor="k", color=colo('orange',1), label='Sem2 CO2')
ax.set(ylim=[400,700])
ax.set_ylabel('ppm')
ax.set_title('CO2 monatliche Mittelwerte August bis April')
ax.set_xticks(x)
# ax.xaxis.set_major_locator(ticker.MultipleLocator(4))
ax.set_xticklabels(['Mai','Jun','Jul','Aug','Sep','Okt','Nov','Dez','Jan','Feb','Mrz','Apr'])
ax.legend()
<matplotlib.legend.Legend at 0x201578bb5c8>
Save & Upload
## Skriptlaufzeit Ende (Funktion in: libraries_and_styles.ipynb)
hours, minutes, seconds = laufzeit()
## Notebook speichern vor dem Upload (Funktion in: libraries_and_styles.ipynb)
save_notebook()
## Notebook als Markdown Datei mit eingebetten Grafiken speichern und auf den Server laden
%run ../Template/save_and_upload.ipynb
Gasverbrauch16_20 Lueftung_aus